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Abstract

This paper considers the dynamic problem of contact interaction of two infinite strips arranged in parallel with an
initial gap. Contact interaction of strips occurs due to impulse loading.

Equations of the 2-dimensional generalized theory of plates and the theory of elasticity are used to describe the
dynamic behavior of strips. The contact problem is solved using the collocation method with iterative refining of the
contact area sizes at each time step.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the most challenging problems in mechanics of a strained solid is analysis of the strength of thin-
wall elements of structures during their unilateral mechanical interaction (Blokh et al., 1977; Kantor, 1990;
Mossakovsky et al., 1978). In this case, the law of pressure distribution, the dimensions and configurations
of contact zones are unknown a priori, and should be found during problem solution. This involves chal-
lenging mathematical computations, especially when solving dynamic problems when interaction parame-
ters have to be defined for each point of time.

Contact problems are dealt with by many authors (Galin, 1976; Goldsmith, 1960; Jäger, 2002; Johnson,
1989; Kantor, 1990; Mackerle, 1998; Muskhelishvili, 1966; Podgorny et al., 1989; Vorovich and Aleksan-
drov, 2001; Zelentsov, 2004). As a rule, in papers consider 2- and 3-dimensional static or quasistatic
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problems (Johnson, 1989; Kantor, 1990; Podgorny et al., 1989). Dynamic interaction processes have been
investigated in less detail, and for this 2-dimensional models are used (Seimov, 1976).

In considering contact problems, a variety of assumptions are used. In some cases, it is supposed that a
priori we know the dimensions of the contact area, and the character of distribution of contact pressures. In
the conjugate method (Mossakovsky et al., 1978), one identifies the contact area and builds a solution for
this area, and also finds a solution for the remaining part of the structure. Then the solutions obtained are
joined on the contact area boundary.

In the semi-inverse method, Blokh et al. (1977) describe the character of distribution of contact pressures
by an expression, which contains arbitrary constants to be determined during problem solution. Other ap-
proaches have been suggested, which are based on eliminating the unknown contact pressure by means of
Winkler�s link (Kantor, 1990); introducing the contact sublayer (Podgorny et al., 1989); asymptotic meth-
ods (Aleksandrov, 1968) and many others (Bezine and Fortune, 1984; Signorini, 1959).

To investigate the behavior of contacting bodies, the most frequently used methods are finite differences,
the finite element, or boundary elements (Blokh et al., 1977; Iosilevich and Osipova, 1976; Kantor, 1990;
Mackerle, 1998; Mossakovsky et al., 1978; Okamoto Noriaki and Nakazawa Masaru, 1979; Podgorny
et al., 1989). Implementing analytical methods involves challenging mathematical computations, and they
are frequently confined to considering the classical problem of a rigid die acting on an infinite or semi-infi-
nite domain (Jäger, 2002; Lourier, 1955; Muskhelishvili, 1966; Zelentsov, 2004).

This paper suggests an analytical-numerical approach to the solution of a dynamic contact problem that
combines the merits of analytical methods and the universality of numerical ones. The approach suggested
is based on the collocations method (Kokhmaniuk et al., 1980; Yanyutin, 1993; Zhemochkin and Sinitsyn,
1962), which makes it possible to simplify significantly the solution of a dynamic contact problem. To de-
scribe the non-stationary deformation of interacting strips, the 2-dimensional generalized theory of plates
(Ugrimov, 2002) and the theory of elasticity (Shupikov and Ugrimov, 1999) are used. No assumptions re-
lated to the character of contact interaction are made. This paper is the first stage in investigating processes
occurring when joining sheet materials by explosions.
2. Equation of motion of a strip

A simply supported infinite strip of width A and thickness h is referenced in Cartesian rectangular coor-
dinates linked to the upper external surface. The strip is made of a uniform isotropic material. It is assumed
that impulse loads are applied to the upper and lower strip surfaces (Fig. 1):
qtop
x ¼ qbottom

x ¼ 0; qtop
z ¼ P topf topðx; tÞ; qbottom

z ¼ �P bottomf bottomðx; tÞ; ð1Þ
where qtop
x ; qtop

z ; qbottom
x ; qbottom

z are the components of external loads applied to the external surfaces of the
strip on the top and bottom respectively; Ptop, Pbottom are their intensities; and f top(x,t), f bottom(x,t) are
functions defining the character of distribution of components along axis Ox as well as the time-dependent
change.

Strip strain is considered small and described by formulas (Parton and Perlin, 1981)
exx ¼
ou
ox
; ezz ¼

ow
oz
; exz ¼

1

2

ou
oz
þ ow

ox

� �
; ð2Þ
where u, w are point displacements along coordinates axes Ox, Oz.
Stresses are computed using Hooke�s law (Parton and Perlin, 1981)
pxx ¼ ðkþ 2lÞexx þ kezz; pzz ¼ ðkþ 2lÞezz þ kexx; pxz ¼ 2lexz; ð3Þ



Fig. 1. Strip.
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where
k ¼ Em
ð1þ mÞð1� 2mÞ ; l ¼

E
2ð1þ mÞ .
Here E, m are the Young modulus and Poisson ratio respectively.

2.1. Generalized theory

The 2-dimensional generalized theory is based on representing the components of the displacement vec-
tor as finite power series with respect to the transverse coordinate (Ugrimov, 2002):
uðx; z; tÞ ¼
XK

k¼0

ðzÞkuk; wðx; z; tÞ ¼
XL

‘¼0

ðzÞ‘w‘; ð4Þ
where uk, w‘ are the sought for expansion coefficients as functions of arguments x, t; K, L are parameters,
which define the number of terms retained in expansions (4). The kinematic relations accepted in (4) at
K = 1, L = 0 comply with the Timoshenko type hypotheses (Timoshenko, 1959).

The strip strains (2), with account of hypotheses (4), take the form
exx ¼
XK

k¼0

ðzÞkuk;x; ezz ¼
XL

‘¼0

‘ � ðzÞ‘�1w‘; exz ¼
1

2

XK

k¼0

k � ðzÞk�1uk þ
XL

‘¼0

ðzÞ‘w‘;x

 !
;

and stresses (3) are defined by expressions
pxx ¼ ðkþ 2lÞ
XK

k¼0

ðzÞkuk;x þ k
XL

‘¼0

‘ � ðzÞ‘�1w‘; pzz ¼ ðkþ 2lÞ
XL

‘¼0

‘ � ðzÞ‘�1w‘ þ k
XK

k¼0

ðzÞkuk;x;

pxz ¼ l
XK

k¼0

k � ðzÞk�1uk þ
XL

‘¼0

ðzÞ‘w‘;x

 !
.
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The generalized forces and moments in the strip are defined by formulas
N k
xx ¼

Z h

0

ðzÞkpxx dz; Nk
zz ¼

Z h

0

ðzÞkpzz dz; Nk
xz ¼

Z h

0

ðzÞkpxz dz.
The equations of motion of the strip and the boundary conditions are obtained by using the Hamilton�s
variational principle (Washizu, 1987). In terms of forces and moments, the equations of motion take the
following form
½N 0
xx;x � I0

x � þ qtop
x þ qbottom

x ¼ 0;

½N 0
xz;x � I0

z � þ qtop
z þ qbottom

z ¼ 0;

Nk
xx;x � kN k�1

xz � Ik
x þ ðhÞ

kqbottom
x ¼ 0;

N ‘
xz;x � ‘N ‘�1

zz � I ‘z þ ðhÞ
‘qbottom

z ¼ 0; k ¼ 1;K; ‘ ¼ 1; L;

ð5Þ
where
Ir
x ¼

q
r þ 1

XK

k¼0

ðr þ 1ÞðhÞrþkþ1

k þ r þ 1
uk;tt

 !
; r ¼ 0;K;

Ip
z ¼

q
p þ 1

XL

‘¼0

ðp þ 1ÞðhÞpþ‘þ1

‘þ p þ 1
w‘;tt

 !
; p ¼ 0; L.
Here q is the density of the strip material.
Hence, non-stationary vibrations of a strip in terms of the 2-dimensional generalized theory are de-

scribed by K + L + 2 differential equations.
The boundary conditions for a simply supported strip have the form: at x = 0 and x = A
N k
xx ¼ 0; w‘ ¼ 0; k ¼ 0;K; ‘ ¼ 0; L. ð6Þ
The equations of motion (5) and the boundary conditions (6) can be written in terms of displacements
X � U ;tt � K � U ¼ Q; 0 6 x 6 A;

C � U ¼ 0; x ¼ 0; x ¼ A;
where U is a vector whose components are the sought for functions
U ¼ ðu0; u1; . . . uK ; w0;w1; . . . ;wLÞ;

K, X and C are square matrices of dimensionality (K + L + 2) · (K + L + 2); Q is a vector with dimension-
ality (K + L + 2) whose components are a function of the external loads components
Q ¼ ð0; 0; . . . ; 0; qtop
z þ qbottom

z ; hqbottom
z ; . . . ; ðhÞLqbottom

z Þ.

The elements of matrices X, K and C are given in Appendix A.
The equations of motion and the boundary conditions are supplemented with the initial conditions. The

initial conditions are taken to be null:
uk ¼ w‘ ¼ 0; uk;t ¼ w‘;t ¼ 0 at t ¼ 0. ð7Þ

The method of solving 2-dimensional equations of motion of a strip is based on expanding the sought for

functions uk, w‘ðk ¼ 0;K; ‘ ¼ 0;LÞ and external loads qtop
z ; qbottom

z into series with respect to functions sat-
isfying conditions (6) on the support periphery
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uk ¼
XM

m¼1

UxkmðtÞ � cos
mpx

A
;

w‘; qtop
z ; qbottom

z

� �
¼
XM

m¼1

½Uz‘mðtÞ; qtop
zm ðtÞ; qbottom

zm ðtÞ� � sin
mpx

A
; ð8Þ
where Uxkm(t), Uzkm(t) are the sought for functions, and M is the number of terms retained in the series.
As a result, the problem on non-stationary deformation of a strip for each value m is reduced to inte-

grating a system of ordinary differential equations with constant coefficients
X � d
2Um

dt2
� Km � Um ¼ Qm; ð9Þ
where Um and Qm are vectors of dimensionality (K + L + 2)
Um ¼ ðUxkm;Uz‘mÞ; k ¼ 0;K; ‘ ¼ 0; L;

Qm ¼ ð0; . . . ; 0; qtop
zm þ qbottom

zm ; hqbottom
zm ; . . . ; ðhÞLqbottom

zm Þ.

Matrix Km is derived from K by substituting the values of partial derivatives into the expressions for ma-

trix elements (Appendix A).
With account of (8), initial conditions (7) take the form
Um ¼
dUm

dt
¼ 0 at t ¼ 0.
To integrate the system obtained, a unique one-step method is used, which is based on the method of
expanding a solution into Taylor�s series (Bakhvalov, 1975).

2.2. Theory of elasticity

The behavior of each strip is described by Lame equations (Novatsky, 1975; Parton and Perlin, 1981),
which, in case of flat strain, have the form
l
o

2u
ox2
þ o

2u
oz2

� �
þ ðkþ lÞ o

2u
ox2
þ o

2w
oxoz

� �
¼ q

o
2u

ot2
;

l
o

2w
ox2
þ o

2w
oz2

� �
þ ðkþ lÞ o

2u
oxoz

þ o
2w

oz2

� �
¼ q

o
2w
ot2

:

ð10Þ
System (10) is solved jointly with conditions (1) for the external surfaces of the strip
pxzðx; 0; tÞ ¼ 0; pzzðx; 0; tÞ ¼ �qtop
z ;

pxzðx; h; tÞ ¼ 0; pzzðx; h; tÞ ¼ qbottom
z ;

ð11Þ
the boundary conditions
pxxð0; z; tÞ ¼ wð0; z; tÞ ¼ 0; pxxðA; z; tÞ ¼ wðA; z; tÞ ¼ 0; ð12Þ

and the initial conditions
uðx; z; 0Þ ¼ wðx; z; 0Þ ¼ ouðx; z; 0Þ
ot

¼ owðx; z; 0Þ
ot

¼ 0. ð13Þ
Stresses are computed by formulas (3), and strains are computed by formulas (2).
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The method of solving problems (10)–(13) is based on an approach described in paper (Shupikov and
Ugrimov, 1999). Displacements and external loads are expanded into series with respect to functions sat-
isfying boundary conditions (12)
u ¼
XM

m¼1

Hxmðz; tÞ � cos
mpx

A
;

½w; qtop
z ; qbottom

z � ¼
XM

m¼1

½Hzmðz; tÞ; qtop
zm ðtÞ; qbottom

zm ðtÞ� � sin
mpz

A
.

Further, partial derivatives with respect to z of functions Hxm(z,t) and Hzm(z,t) are replaced with their
finite-difference representations. For this, a regular grid is built in each strip
zs ¼ ss; s ¼ 0; S; s ¼ h
S

.

To approximate the partial derivatives, a 3-point template is used
oHs
km

oz
¼ Hsþ1

km �Hs�1
km

2s
;

o2Hs
km

oz2
¼ Hsþ1

km � 2Hs
km þHs�1

km

s2
;

where Hs
km ¼ Hs

kmðtÞ ¼ Hkmðzs; tÞ, k = x,z.
As a result of these transforms, the original problem (10)–(13) is reduced to integrating a system of equa-

tions for each value m. Eq. (10) takes the form
l
s2

Hs�1
xm �

2l
s2
þ ðkþ 2lÞm

2p2

A2

� �
Hs

xm þ
l
s2

Hsþ1
xm þ

kþ l
2s

mp
A
ðHsþ1

zm �Hs�1
zm Þ ¼ q

d2Hs
xm

dt2
;

� kþ l
2s

mp
A
ðHsþ1

xm �Hs�1
xm Þ þ

kþ 2l
s2

Hs�1
zm �

2kþ 4l
s2

þ l
m2p2

A2

� �
Hs

zm

þ kþ 2l
s2

Hsþ1
zm ¼ q

d2Hs
zm

dt2
; s ¼ 0; S.

ð14Þ
Conditions (11) and (13) are defined by expressions
H1
xm �H�1

xm

2s
þ mp

A
H0

zm ¼ 0; �k
mp
A

H0
xm þ ðkþ 2lÞH

1
zm �H�1

zm

2s
¼ �qtop

zm ;

HSþ1
xm �HS�1

xm

2s
þ mp

A
HS

zm ¼ 0; �k
mp
A

HS
xm þ ðkþ 2lÞH

Sþ1
zm �HS�1

zm

2s
¼ �qbottom

zm ; ð15Þ

Hs
xmð0Þ ¼ Hs

zmð0Þ ¼
dHs

xmð0Þ
dt

¼ dHs
zmð0Þ
dt

¼ 0. ð16Þ
Boundary conditions (12) are met identically.
Conditions (15) make it possible to eliminate the values of unknown functions in peripheral points

H�1
xm ; HSþ1

xm ; H�1
zm ; HSþ1

zm from system (14).
As a result, the solution of the problem on the strip dynamic response is reduced to integrating a system

of ordinary differential equations with constant coefficients for each value m
eX � d2Hm

dt2
� eKm �Hm ¼ eQm; ð17Þ
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where Hm and eQm are vectors of dimensionality 2(S + 1) having the following components
Hm ¼ ðH0
xm;H

0
zm;H

1
xm;H

1
zm; . . . ;HS

xm;H
S
zmÞ;

eQm ¼ 0;
2

s
qtop

zm ; 0; . . . ; 0; 0;
2

s
qbottom

zm

� �
.

eX; eKm are square matrices of dimensionality 2(S + 1) · 2(S + 1). The matrix elements are given in Appen-
dix B.

The system is integrated similar to that of the generalized theory.
3. Contact problem

Two infinite simply supported strips are arranged in parallel with an initial gap d (Fig. 2). The geomet-
rical dimensions of the strips are as follows: A is width; and h1 and h2 are the thickness of the upper and
lower strips respectively. By convention, superscript 1 will designate all the parameters relating to the upper
strip, and 2 will designate those for the lower strip.

Interaction of strips occurs in an a priori unknown area of width R as a result of impulse loading of the
upper strip with load (1).

Condition
�q1bottom
z ¼ q2top

z ¼ F ðx; tÞ; x 2 R. ð18Þ

is satisfied in the contact area. Here F(x,t) is the unknown contact pressure. It is assumed that there is no
friction in the contact area. Beyond the contact zone q1bottom

z ¼ q2top
z ¼ 0.

Hence, the original contact problem is reduced to integrating a system of differential equations (9) or
(17), which describe the vibrations of strips with account of loads (1) and (18).
Fig. 2. Contact problem.
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The unknown contact pressure and the contact area are found from condition
w1ðx; h1; tÞ � w2ðx; 0; tÞ � d 6 0. ð19Þ

In the contact area, inequality (19) transforms to an equality.
To determine the contact area and the contact pressures, the collocations method is used (Kokhmaniuk

et al., 1980; Yanyutin, 1993; Zhemochkin and Sinitsyn, 1962), according to which each strip is divided
widthwise into N sections
xk ¼ kDx; Dx ¼ A
N
; k ¼ 0;N .
In each section, the contact pressure is considered to be constant
F ðx; tÞ ¼ F kðtÞ; x 2 ½xk�1; xk�;

thus allowing replacing a continuous contact pressure distribution step-function (Fig. 3):
F ðx; tÞ ¼
XN

k¼1

F kðtÞðHðxk � xÞ � Hðxk�1 � xÞÞ;
where H(x) is the Heaviside function.
Further, for each section, conditions (19) are written as equalities
w1ðfk; h
1; tÞ � w2ðfk; 0; tÞ � d ¼ 0; k ¼ 1;N ;
where nk ¼ xkþxk�1

2
, making it possible to form an inhomogeneous system of linear algebraic equations with

respect to function Fk(t)
AF ¼ B. ð20Þ

Here A is an N · N matrix; F is a vector whose components are functions Fk(t), F ¼ ðF 1; F 2; . . . ; F N Þ.
If the solution of this system yields only negative values of Fk, there is no contact between strips, and Fk

is assumed to equal zero.
If in some sections Fk > 0, and in other ones Fk 6 0, this is indicative of a possible contact. The contact

area is defined by the multitude of sections where Fk > 0.
Fig. 3. Collocation sections.
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The contact area found is refined with an iterative procedure comprising in essence the following:

• for sections where Fk 6 0, the values of contact pressures are assumed to equal zero Fk = 0;
• for sections where Fk > 0, the system of Eqs. (20) is built and solved;
• if all anew obtained solutions Fk > 0, then they are the sought for values of unknown contact pressures

Fk; and the sections, for which Fk > 0, comprise the refined contact area;
• if some anew found Fk 6 0, the procedure is repeated.

Searching for the contact pressures and the contact area by using the given technique, is carried out at
each step of integrating the system of differential equations (9) or (17) with respect to time.
4. Numerical results

Let us consider contact interaction of two steel strips (A = 1 m, and h1 = h2 = 0.05 m) arranged with a
gap of 0.5 cm, and affected by an impulse load
Table
Stress-

Deflect

Stresse

Stresse

Contac
q1top
z ¼ P 0HðtÞ; 0 6 x 6 A;
where H(t) is the Heaviside function, and P0 = 0.7 MPa. The steel properties are as follows:
E = 2.1 · 105 MPa, m = 0.3, and q = 7.85 · 103 kg/m3.

In all computations given below, the stress-strained condition of the strips is described by the generalized
theory with parameters K = 7, L = 6 and by the theory of elasticity. In so doing, 200 terms were retained in
the Fourier series (M = 200), and 105 collocation sections (N = 105) were selected. In addition, when solv-
ing the theory of elasticity equations, in each strip a 40-point grid (S = 40) was used. During subsequent
increase of parameters K, L, M, N, and S, the numeric results remained practically invariable, which points
to the inner convergence of the method. The time interval investigated was within 0–17.5 ms.

Table 1 summarizes the maximum values of deflections wi, stresses pi
xx; pi

zz, as well as the values of the
contact force per strip unit lengthZ
P ¼
R

F ðx; tÞdx.
In the table, values obtained by the generalized theory are shown above the line, and those obtained by
using the theory of elasticity are shown under the line. The maximum values of deflections wi and stresses
pi

xx computed by these theories practically coincide with one another. Note that the conditions of contact
between strips both in terms of the theory of elasticity and the generalized theory are strictly satisfied
ðp1bottom

zz ¼ p2top
zz Þ.
1
strained state of strips during impact and the maximum contact force

Strip 1 Strip 2

Top Bottom Top Bottom

ion,wi (cm) 0:5853

0:5858

0:5852

0:5857

0:2885

0:2895

0:2885

0:2895

s pi
xx (MPa)

�385:1

�385:2

381:3

381:5

�212:6

�214:3

212:2

213:7

s pi
zz (MPa)

�1:0

�0:7

�91:5

�80:1

�91:5

�80:1

�0:3

0

t force P (kN)
49:62

50:05



Fig. 4. Deflection of strips.
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Fig. 4 shows the deflection in the middle of the surfaces of contacting strips vs. time. Hereinafter the
solid line will designate results obtained by the theory of elasticity, and the dotted line will refer to those
obtained by the generalized theory. It is clear that the results of calculating deflections by the theories con-
sidered practically coincide.
Fig. 5. Stresses pi
xx in strips vs. time.
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The figure shows three time intervals (I, II, and III) corresponding to the characteristic stages of strip
deformation.

First stage (I). The upper strip performs forced vibrations, and the lower one located at the distance of
0.5 cm from the upper strip is at rest.

Second stage (II). The strips come into contact interaction and perform joint motion. In so doing, the
effect of recoil of one strip from the other one followed by subsequent impact is observed (expanded view
1 in Fig. 4).

Third stage (III). The strips perform independent vibrations. The upper strip performs forced vibrations
under the effect of the external impulse load, and the lower strip performs free vibrations until the next
impact.

Fig. 4 also shows that, in the time interval being investigated, there are three areas 1 to 3 of contact inter-
action of strips. After each interaction the strips perform independent motion.
Fig. 6. Contact force and contact area width.



Table 2
Contact force on collocation section

t, ms Contact force Fk Æ Dx, kN

F49 Æ Dx F50 Æ Dx F51 Æ D x F52 Æ Dx F53 Æ Dx F54 Æ Dx F55 Æ Dx F56 Æ Dx F57 Æ Dx

2.480 0 0 0 0 0.38 0 0 0 0
2.484 0 0 0 4.30 5.37 4.30 0 0 0
2.488 0 0 5.32 7.56 7.96 7.56 5.32 0 0
2.492 0 2.67 7.25 8.07 8.70 8.07 7.25 2.67 0
2.496 0 4.79 7.50 8.41 8.65 8.41 7.50 4.79 0
2.500 0 4.87 6.09 6.74 6.91 6.74 6.09 4.87 0
2.504 0 3.12 3.88 3.90 3.91 3.90 3.88 3.12 0
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Fig. 5 shows a comparison of stresses pi
xx obtained by the generalized theory and the theory of elasticity.

The calculation results are given for the middle of the external surfaces of contacting strips. In Figure, it is
clear that, after collision, the 1st, 2nd and higher frequencies are excited. The 1st and 2nd natural frequen-
cies are equal 116.8 Hz and 1020.6 Hz correspondingly. The period of the 2nd natural frequency
(s = 0.98 ms) is given in Fig. 5.

Changes in contact forces and dimensions of contact area R at stage II are shown in Fig. 6. It is clear that
a change in contact force value involves a change in dimensions of contact area R. Roman numeral IV in
the figure shows the time interval during which one can observe the above-mentioned effect of recoil of one
strip from the other one in the process of contact interaction at stage II (Fig. 4).

Besides, Table 2 also summarizes the changes in the contact area and values of contact force. It shows
values Fk(t) Æ Dx for the initial phase of stage II obtained by the theory of elasticity. The results of general-
ized theory analysis are similar to the data given in the table, so they are not shown. The table shows that
the dimensions of the contact area and the contact force in each collocation section are a function of time.
The contact area for the problem being considered is located symmetrically relative to the middle of the
strip.
5. Conclusions

The paper presents an approach to solving the dynamic problem of contact interaction of two parallel
strips with an initial gap between them, which are affected by an impulse load applied to the external surface
of one of the strips.

The approach suggested is based on the collocation method. Using this method allows to significantly
simplify the process of searching for an a priori contact area and determining the contact pressures at each
point in time.

The contact area is a multitude of collocation sections, for which positive values of contact pressures
have been obtained. Its dimensions are found with accuracy equal to the length of the collocation section.
The area dimensions are changed by joining new sections or excluding those, for which the contact condi-
tion is violated. Therefore, the contact area width vs. time function (Fig. 6) has a step character.

For the static loading case, methods have been developed, which allow determining the dimensions of
the contact area and the values of contact pressures with greater accuracy than the approach used. How-
ever, for the case of dynamic contact problems, which are very involved from the mathematical viewpoint,
the approach offered is justified.

The strip response is described by equations of the 2-dimensional generalized theory of plates and the
theory of elasticity. The results of investigations obtained by using these theories practically coincide. There
are some differences for the components of the stress tensor pi

zz and the contact force P. These differences
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are explained by the fact that the 2-dimensional theory does not take into account the presence of wave
processes over the thickness of the strips, which occur during their dynamic contact interaction.
Appendix A

The elements of the lower triangle of matrix X have the following form
X1 1 ¼ �X2þK 2þK ¼ �hq; X1þk 1 ¼ �
hkþ1q
k þ 1

; X1þk 1þr ¼ �
hkþrþ1q

k þ r þ 1
;

X2þKþp 2þK ¼
hpþ1q
p þ 1

; X2þKþp 2þKþ‘ ¼
hpþ‘þ1q

p þ ‘þ 1
; k; r ¼ 1;K; ‘; p ¼ 1; L:
The remaining matrix elements for lower triangle are equal to zero.
The elements of the lower triangle of matrix K have the form
K1 1 ¼ �hðkþ 2lÞ o
2

ox2
; K1þk 1 ¼ �

hkþ1

k þ 1
ðkþ 2lÞ o

2

ox2
;

K1þk 1þr ¼ �
hkþrþ1

k þ r þ 1
ðkþ 2lÞ o2

ox2
þ krlhrþk�1

r þ k � 1
; K2þK 1þr ¼ hrl

o

ox
;

K2þK 2þK ¼ hl
o

2

ox2
; K2þKþp 1 ¼ �hpk

o

ox
; K2þKþp 1þr ¼ �hpþr kp � lr

p þ r
o

ox
;

K2þKþp 2þK ¼
hpþ1l
p þ 1

o2

ox2
; K2þKþp 2þKþ‘ ¼

hpþ‘þ1l
p þ ‘þ 1

o2

ox2
� p‘ðkþ 2lÞhpþ‘�1

p þ ‘� 1
;

k; r ¼ 1;K; ‘; p ¼ 1; L:
The elements of matric C have the form
C1 1 ¼ hðkþ 2lÞ o

ox
; C1 1þr ¼

hrþ1

r þ 1
ðkþ 2lÞ o

ox
; C1 2þKþ‘ ¼ h‘k;

C1þk 1 ¼
hkþ1

k þ 1
ðkþ 2lÞ o

ox
; C1þk 1þr ¼

hkþrþ1

k þ r þ 1
ðkþ 2lÞ o

ox
;

C1þk 2þKþ‘ ¼ hkþ‘k
‘

k þ ‘ ; C2þK 2þK ¼ C2þKþp 2þKþp ¼ 1:
The remaining elements of matrices C are equal to zero.
Appendix B

The elements of matric eX have the form
eXii ¼ q; i ¼ 1; 2ðS þ 1Þ
The remaining elements of matrices eX are equal to zero.
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The elements of matrix eK have the following form
eK1 1 ¼
2l
s2
þ kþ 2l� kðkþ lÞ

kþ 2l

� �
m2p2

A2
; eK1 2 ¼ �

2l
s

mp
A
; eK1 3 ¼ �

2l
s2
; eK1 4 ¼ 0;

eK2 1 ¼
2k
s

mp
A
; eK2 2 ¼

2ðkþ 2lÞ
s2

� k
m2p2

A2
; eK2 3 ¼ 0; eK2 4 ¼ �

2ðkþ 2lÞ
s2

;

eK1þ2i 2i�1 ¼ �
l
s2
; eK1þ2i 2i ¼

ðkþ lÞ
2s

mp
A
; eK1þ2i 1þ2i ¼

2l
s2
þ ðkþ 2lÞm

2p2

A2
; eK1þ2i 2þ2i ¼ 0;

eK1þ2i 3þ2i ¼ �
l
s2
; eK1þ2i 2iþ4 ¼ �

ðkþ lÞ
2s

mp
A
; eK2þ2i 2i�1 ¼ �

ðkþ lÞ
2s

mp
A
;

eK2þ2i 2i ¼ �
ðkþ 2lÞ

s2
; eK2þ2i 1þ2i ¼ 0; eK1þ2i 2þ2i ¼

2ðkþ 2lÞ
s2

þ l
m2p2

A2
;

eK2þ2i 3þ2i ¼
kþ l

2s
mp
A
; eK1þ2i 4þ2i ¼ �

kþ 2l
s2

; eK2Sþ1 2S�1 ¼ �
2l
s2
; eK2Sþ1 2S ¼ 0;

eK2Sþ1 2Sþ1 ¼
2l
s2
þ kþ 2l� kðkþ lÞ

kþ 2l

� �
m2p2

A2
; eK2Sþ1 2Sþ2 ¼

2l
s

mp
A
; eK2Sþ2 2S�1 ¼ 0;

eK2Sþ2 2S ¼ �
2ðkþ 2lÞ

s2
; eK2Sþ2 2Sþ1 ¼ �

2k
s

mp
A
; eK2Sþ2 2Sþ2 ¼

2ðkþ 2lÞ
s2

� k
m2p2

A2
; i ¼ 1; S � 1:
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